Dawn's Blogs

分享技术 记录成长

0%

Redis学习 (9) 线程模型

Redis 单线程模型

Redis 单线程指的是「接收客户端请求->解析请求 ->进行数据读写等操作->发送数据给客户端」这个过程是由一个线程(主线程)来完成的,这也是我们常说 Redis 是单线程的原因。

后台线程

但是,Redis 程序并不是单线程的,Redis 在启动的时候,是会启动后台线程(BIO)的:

  • Redis 在 2.6 版本,会启动 2 个后台线程,分别处理关闭文件AOF 刷盘这两个任务;
  • Redis 在 4.0 版本之后,新增了一个新的后台线程,用来异步释放 Redis 内存,也就是 lazyfree 线程。例如执行 unlink key / flushdb async / flushall async 等命令,会把这些删除操作交给后台线程来执行,好处是不会导致 Redis 主线程卡顿。

因此,当删除一个大 key 的时候,不要使用 del 命令删除,因为 del 是在主线程处理的,这样会导致 Redis 主线程卡顿,因此我们应该使用 unlink 命令来异步删除大key。

之所以 Redis 为「关闭文件、AOF 刷盘、释放内存」这些任务创建单独的线程来处理,是因为这些任务的操作都是很耗时的,如果把这些任务都放在主线程来处理,那么 Redis 主线程就很容易发生阻塞,这样就无法处理后续的请求了。

后台线程相当于一个消费者,生产者把耗时任务丢到任务队列中,消费者(BIO)不停轮询这个队列,拿出任务就去执行对应的方法即可。

img

单线程模型

Redis 6.0 之前的单线程模型如下:连接事件、读事件(以及后续的执行)、写事件都是在一个线程内完成的

img

单线程好处

Redis 官方基准测试中,单线程 Redis 吞吐量可以到达 10W/秒,之所以 Redis 采用单线程(网络 I/O 和执行命令)那么快,有如下几个原因:

  • Redis 的大部分操作都在内存中完成,并且采用了高效的数据结构,因此 Redis 瓶颈可能是机器的内存或者网络带宽,而并非 CPU,既然 CPU 不是瓶颈,那么自然就采用单线程的解决方案了;
  • Redis 采用单线程模型可以避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。
  • Redis 采用了 I/O 多路复用机制处理大量的客户端 Socket 请求(epoll 多路复用)。

关于为什么使用单线程?

Redis 官方是这样回答的:CPU 并不是制约 Redis 性能表现的瓶颈所在,更多情况下是受到内存大小和网络I/O的限制。如果你想要使用服务的多核CPU,可以在一台服务器上启动多个节点或者采用分片集群的方式。

还有以下考虑:可维护性高,多线程模型虽然在某些方面表现优异,但是它却引入了程序执行顺序的不确定性,带来了并发读写的一系列问题,增加了系统复杂度、同时可能存在线程切换、甚至加锁解锁、死锁造成的性能损耗

Redis 多线程

Redis 6.0 之后,网络 I/O 多线程,但是执行命令依然是单线程。

但是在 Redis 6.0 版本之后,也采用了多个 I/O 线程来处理网络请求这是因为随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 I/O 的处理上。Redis 6.0 对于网络 I/O 采用多线程来处理,但是对于命令的执行,Redis 仍然使用单线程来处理

Redis 官方表示,Redis 6.0 版本引入的多线程 I/O 特性对性能提升至少是一倍以上

Redis 6.0 版本支持的 I/O 多线程特性,默认情况下 I/O 多线程只针对发送响应数据(write client socket),并不会以多线程的方式处理读请求(read client socket)。要想开启多线程处理客户端读请求,就需要把配置文件中的 io-threads-do-reads 配置项设为 yes。想要配置网络 I/O 多线程个数,可以配置 io-thread,配置为 N,表示启用 N-1 个 I/O 多线程(主线程也算一个 I/O 线程)。

因此, Redis 6.0 版本之后,Redis 在启动的时候,默认情况下会额外创建 6 个线程这里的线程数不包括主线程):

  • Redis-server : Redis的主线程,主要负责执行命令;
  • bio_close_file、bio_aof_fsync、bio_lazy_free:三个后台线程,分别异步处理关闭文件任务、AOF刷盘任务、释放内存任务;
  • io_thd_1、io_thd_2、io_thd_3:三个 I/O 线程,io-threads 默认是 4 ,所以会启动 3 个 I/O 多线程,用来分担 Redis 网络 I/O 的压力。